この記事は Florina Muntenescu による Android Developers - Medium の記事 "Don’t argue with default arguments" を元に翻訳・加筆したものです。詳しくは元記事をご覧ください。
短くて使いやすいデフォルト引数を利用すると、ボイラープレートを書くことなく関数のオーバーロードを実現できます。多くの Kotlin の機能と同じように、この機能も魔法のように便利です。その秘密を知りたいと思いませんか?この記事では、デフォルト引数の内部の仕組みを紹介します。
関数のオーバーロードが必要な場合、同じ関数を複数回実装する代わりに、デフォルト引数を使うことができます。
<!-- Copyright 2019 Google LLC. SPDX-License-Identifier: Apache-2.0 -->// instead of:fun play(toy: Toy){ ... }fun play(){ play(SqueakyToy)} // use default arguments: fun play(toy: Toy = SqueakyToy)fun startPlaying() { play(toy = Stick) play() // toy = SqueakyToy}
<!-- Copyright 2019 Google LLC.
SPDX-License-Identifier: Apache-2.0 -->
// instead of:
fun play(toy: Toy){ ... }
fun play(){
play(SqueakyToy)
}
// use default arguments:
fun play(toy: Toy = SqueakyToy)
fun startPlaying() {
play(toy = Stick)
play() // toy = SqueakyToy
デフォルト引数はコンストラクタにも適用できます。
<!-- Copyright 2019 Google LLC. SPDX-License-Identifier: Apache-2.0 -->class Doggo( val name: String, val rating: Int = 11)val goodDoggo = Doggo(name = "Tofu")val veryGoodDoggo = Doggo(name = "Tofu", rating = 12)
class Doggo(
val name: String,
val rating: Int = 11
)
val goodDoggo = Doggo(name = "Tofu")
val veryGoodDoggo = Doggo(name = "Tofu", rating = 12)
デフォルトでは、Java はデフォルト値のオーバーロードを認識しません。
<!-- Copyright 2019 Google LLC. SPDX-License-Identifier: Apache-2.0 --> // kotlinfun play(toy: Toy = SqueakyToy) {... }// javaDoggoKt.play(DoggoKt.getSqueakyToy());DoggoKt.play(); // error: Cannot resolve method 'play()'
// kotlin
fun play(toy: Toy = SqueakyToy) {... }
// java
DoggoKt.play(DoggoKt.getSqueakyToy());
DoggoKt.play(); // error: Cannot resolve method 'play()'
コンパイラにオーバーロード メソッドを生成するよう指示するには、Kotlin 関数に @JvmOverloads アノテーションを追加します。
@JvmOverloads
/* Copyright 2020 Google LLC. SPDX-License-Identifier: Apache-2.0 */@JvmOverloadsfun play(toy: Toy = SqueakyToy) {… }
/* Copyright 2020 Google LLC.
SPDX-License-Identifier: Apache-2.0 */
fun play(toy: Toy = SqueakyToy) {… }
コンパイラが生成した内容を確認するため、逆コンパイルした Java コードを見てみましょう。[Tools] -> [Kotlin] -> [Show Kotlin Bytecode] を選択し、[Decompile] ボタンを押します。
[Tools] -> [Kotlin] -> [Show Kotlin Bytecode]
[Decompile]
/* Copyright 2020 Google LLC. SPDX-License-Identifier: Apache-2.0 */fun play(toy: Toy = SqueakyToy)...fun startPlaying() { play(toy = Stick) play() // toy = SqueakyToy}// decompiled Java codepublic static final void play(@NotNull Toy toy) { Intrinsics.checkNotNullParameter(toy, "toy");}// $FF: synthetic methodpublic static void play$default(Toy var0, int var1, Object var2) { if ((var1 & 1) != 0) { var0 = SqueakyToy; } play(var0);}public static final void startPlaying() { play(Stick); play$default((Toy)null, 1, (Object)null);}
...
// decompiled Java code
public static final void play(@NotNull Toy toy) {
Intrinsics.checkNotNullParameter(toy, "toy");
// $FF: synthetic method
public static void play$default(Toy var0, int var1, Object var2) {
if ((var1 & 1) != 0) {
var0 = SqueakyToy;
play(var0);
public static final void startPlaying() {
play(Stick);
play$default((Toy)null, 1, (Object)null);
コンパイラが 2 つの関数を生成していることがわかります。
play
Toy
play$default
int
Object
null
play$default の int パラメータの値は、デフォルト引数が渡された引数の数と、そのインデックスに基づいて計算されます。Kotlin コンパイラは、どのパラメータを使って play 関数を呼び出すかを、このパラメータの値に基づいて判断します。
この例の play() の呼び出しでは、インデックス 0 の引数がデフォルト引数を使っています。そのため、int var1 = 2⁰ を使って play$default を呼び出します。
play()
int var1 = 2⁰
これで、play$default の実装は、var0 の値をデフォルト値で置き換えなければならないことを認識できます。
var0
この int パラメータの動作を確認するため、もう少し複雑な例を見てみましょう。play 関数を拡張し、この関数を呼び出す際に doggo と toy をデフォルト引数として使うようにします。
doggo
toy
/* Copyright 2020 Google LLC. SPDX-License-Identifier: Apache-2.0 */ fun play(doggo: Doggo = goodDoggo, doggo2: Doggo = veryGoodDoggo, toy: Toy = SqueakyToy) {...}fun startPlaying() { play2(doggo2 = myDoggo)}
fun play(doggo: Doggo = goodDoggo, doggo2: Doggo = veryGoodDoggo, toy: Toy = SqueakyToy) {...}
play2(doggo2 = myDoggo)
逆コンパイルしたコードはどうなったでしょうか。
/* Copyright 2020 Google LLC. SPDX-License-Identifier: Apache-2.0 */ public static final void play(@NotNull Doggo doggo, @NotNull Doggo doggo2, @NotNull Toy toy) {... }// $FF: synthetic methodpublic static void play$default(Doggo var0, Doggo var1, Toy var2, int var3, Object var4) { if ((var3 & 1) != 0) { var0 = goodDoggo; } if ((var3 & 2) != 0) { var1 = veryGoodDoggo; } if ((var3 & 4) != 0) { var2 = SqueakyToy; } play(var0, var1, var2);}public static final void startPlaying() { play2$default((Doggo)null, myDoggo, (Toy)null, 5, (Object)null); }
public static final void play(@NotNull Doggo doggo, @NotNull Doggo doggo2, @NotNull Toy toy) {
public static void play$default(Doggo var0, Doggo var1, Toy var2, int var3, Object var4) {
if ((var3 & 1) != 0) {
var0 = goodDoggo;
if ((var3 & 2) != 0) {
var1 = veryGoodDoggo;
if ((var3 & 4) != 0) {
var2 = SqueakyToy;
play(var0, var1, var2);
play2$default((Doggo)null, myDoggo, (Toy)null, 5, (Object)null);
int パラメータが 5 になりました。この計算の仕組みは次のようになります。0 番目と 2 番目のパラメータでデフォルト引数が使われているので、var3 = 2⁰ + 2² = 5 となります。パラメータは、ビット単位の & 演算を使って次のように評価されます。
var3 = 2⁰ + 2² = 5
var3 & 1 != 0
true
var0 = goodDoggo
var3 & 2 != 0
false
var1
var3 & 4 != 0
var2 = SqueakyToy
コンパイラは、var3 に適用されたビットマスクから、どのパラメータをデフォルト値と置き換えるかを計算できます。
var3
上の例で、Object パラメータの値が常に null になっていたことに気づいたかもしれません。実際に、play$default 関数ではこの値が使われることはありません。このパラメータは、オーバーライドする関数でデフォルト値をサポートするために使用されています。
デフォルト引数がある関数をオーバーライドすると、何が起きるでしょうか。
先ほどの例を次のように変更してみましょう。
Doggo
Open
PlayfulDoggo
PlayfulDoggo.play にデフォルト値を設定しようとしても、次のように表示され、許可されません。An overriding function is not allowed to specify default values for its parameters(オーバーライド関数では、パラメータへのデフォルト値の指定は許可されていません)
/* Copyright 2020 Google LLC. SPDX-License-Identifier: Apache-2.0 */open class Doggo( val name: String, val rating: Int = 11) { open fun play(toy: Toy = SqueakyToy) {...}}class PlayfulDoggo(val playfulness: Int, name: String, rating: Int) : Doggo(name, rating) { // error: An overriding function is not allowed to specify default values for its parameters override fun play(toy: Toy = Stick) { }}
open class Doggo(
) {
open fun play(toy: Toy = SqueakyToy) {...}
class PlayfulDoggo(val playfulness: Int, name: String, rating: Int) : Doggo(name, rating) {
// error: An overriding function is not allowed to specify default values for its parameters
override fun play(toy: Toy = Stick) { }
override を削除して逆コンパイルしたコードを確認すると、PlayfulDoggo.play() は次のようになっています。
override
PlayfulDoggo.play()
public void play(@NotNull Toy toy) {... }// $FF: synthetic methodpublic static void play$default(Doggo var0, Toy var1, int var2, Object var3) { if (var3 != null) { throw new UnsupportedOperationException("Super calls with default arguments not supported in this target, function: play"); } else { if ((var2 & 1) != 0) { var1 = DoggoKt.getSqueakyToy(); } var0.play(var1); }}
public void play(@NotNull Toy toy) {... }
public static void play$default(Doggo var0, Toy var1, int var2, Object var3) {
if (var3 != null) {
throw new UnsupportedOperationException("Super calls with default arguments not supported in this target, function: play");
} else {
if ((var2 & 1) != 0) {
var1 = DoggoKt.getSqueakyToy();
var0.play(var1);
これは、デフォルト引数を使った super の呼び出しが将来的にサポートされるという意味なのでしょうか。この点については、成り行きを見守るしかありません。
コンストラクタでは、逆コンパイルした Java コードに 1 つだけ違う点があります。以下をご覧ください。
/* Copyright 2020 Google LLC. SPDX-License-Identifier: Apache-2.0 */ // kotlin declarationclass Doggo( val name: String, val rating: Int = 11)// decompiled Java codepublic final class Doggo { ... public Doggo(@NotNull String name, int rating) { Intrinsics.checkNotNullParameter(name, "name"); super(); this.name = name; this.rating = rating; } // $FF: synthetic method public Doggo(String var1, int var2, int var3, DefaultConstructorMarker var4) { if ((var3 & 2) != 0) { var2 = 11; } this(var1, var2); }
// kotlin declaration
public final class Doggo {
public Doggo(@NotNull String name, int rating) {
Intrinsics.checkNotNullParameter(name, "name");
super();
this.name = name;
this.rating = rating;
public Doggo(String var1, int var2, int var3, DefaultConstructorMarker var4) {
var2 = 11;
this(var1, var2);
コンストラクタでも合成メソッドが作成されていますが、関数で使われていた Object ではなく、DefaultConstructorMarker が null で呼び出されています。
DefaultConstructorMarker
/* Copyright 2020 Google LLC. SPDX-License-Identifier: Apache-2.0 */// kotlinval goodDoggo = Doggo("Tofu")// decompiled Java codeDoggo goodDoggo = new Doggo("Tofu", 0, 2, (DefaultConstructorMarker)null);
val goodDoggo = Doggo("Tofu")
Doggo goodDoggo = new Doggo("Tofu", 0, 2, (DefaultConstructorMarker)null);
デフォルト引数があるセカンダリ コンストラクタでも、プライマリ コンストラクタと同じように DefaultConstructorMarker を使った別の合成メソッドが生成されます。
/* Copyright 2020 Google LLC. SPDX-License-Identifier: Apache-2.0 */// kotlinclass Doggo( val name: String, val rating: Int = 11) { constructor(name: String, rating: Int, lazy: Boolean = true) }// decompiled Java codepublic final class Doggo { ... public Doggo(@NotNull String name, int rating) { ... } // $FF: synthetic method public Doggo(String var1, int var2, int var3, DefaultConstructorMarker var4) { if ((var3 & 2) != 0) { var2 = 11; } this(var1, var2); } public Doggo(@NotNull String name, int rating, boolean lazy) { ... } // $FF: synthetic method public Doggo(String var1, int var2, boolean var3, int var4, DefaultConstructorMarker var5) { if ((var4 & 4) != 0) { var3 = true; } this(var1, var2, var3); }}
constructor(name: String, rating: Int, lazy: Boolean = true)
public Doggo(@NotNull String name, int rating, boolean lazy) {
public Doggo(String var1, int var2, boolean var3, int var4, DefaultConstructorMarker var5) {
if ((var4 & 4) != 0) {
var3 = true;
this(var1, var2, var3);
シンプルで美しいデフォルト引数を利用すると、パラメータにデフォルト値を設定できるようになるので、メソッドをオーバーロードする際に書かなければならないボイラープレート コードの量が減ります。多くの Kotlin キーワードに言えることですが、生成されるコードを調べてみれば、そこでどのような魔法が使われているかを理解できます。詳しくは、他の Kotlin Vocabulary の投稿を確認してみてください。
仕事を完了する方法の 1 つは、その仕事を他者に委譲することです。皆さんの仕事を友だちに委譲することを言っているわけではありません。今回のテーマは、あるオブジェクトから別のオブジェクトに委譲することです。
ソフトウェアの世界では、委譲という考え方は新しいものではありません。委譲はデザイン パターンの 1 つで、あるオブジェクトが デリゲートと呼ばれるヘルパー オブジェクトに委譲することでリクエストを処理することを指します。デリゲートの役割は、元のオブジェクトに代わってリクエストを処理し、その結果を元のオブジェクトが利用できるようにすることです。
Kotlin はクラス委譲とプロパティ委譲をサポートしているので、委譲を簡単に扱えます。さらに、いくつかの独自の組み込みデリゲートも提供しています。
最後に削除された項目を復元できる ArrayList を使うとしましょう。基本的に、必要なのは同じ ArrayList の機能だけですが、最後に削除された項目への参照が必要です。
ArrayList
これを実現する方法の 1 つは、ArrayList クラスを拡張することです。この新しいクラスは、MutableList インターフェースの実装ではなく ArrayList の具象クラスを拡張したものなので、ArrayList の具象クラスの実装と強く結合されることになります。
MutableList
MutableList の実装で remove() 関数をオーバーライドし、削除した項目の参照を保持できるようにしたうえで、その他の空の実装を他のオブジェクトに委譲したいと思ったことはありませんか?Kotlin では、これを実現する方法が提供されています。具体的には、内部 ArrayList インスタンスに作業の大半を委譲し、その動作をカスタマイズできます。これを行うため、Kotlin には新しいキーワード by が導入されています。
remove()
by
では、クラス委譲の仕組みを確認してみましょう。by キーワードを使うと、Kotlin は innerList インスタンスをデリゲートとして使用するコードを自動的に生成します。
innerList
<!-- Copyright 2019 Google LLC.SPDX-License-Identifier: Apache-2.0 -->class ListWithTrash <T>( private val innerList: MutableList<T> = ArrayList<T>()) : MutableCollection<T> by innerList { var deletedItem : T? = null override fun remove(element: T): Boolean { deletedItem = element return innerList.remove(element) } fun recover(): T? { return deletedItem }}
class ListWithTrash <T>(
private val innerList: MutableList<T> = ArrayList<T>()
) : MutableCollection<T> by innerList {
var deletedItem : T? = null
override fun remove(element: T): Boolean {
deletedItem = element
return innerList.remove(element)
fun recover(): T? {
return deletedItem
by キーワードは、MutableList インターフェースの機能を innerList という名前の内部 ArrayList インスタンスに委譲するよう Kotlin に伝えます。内部 ArrayList オブジェクトに直接橋渡しするメソッドが提供されるので、ListWithTrash は MutableList インターフェースのすべての機能をサポートします。さらに、独自の動作を追加することもできるようになります。
ListWithTrash
動作の仕組みを確認してみましょう。ListWithTrash のバイトコードを逆コンパイルした Java コードを見ると、Kotlin コンパイラが実際にラッパー関数を作成していることを確認できます。このラッパー関数が、内部 ArrayList オブジェクトの対応する関数を呼び出していることもわかります。
public final class ListWithTrash implements Collection, KMutableCollection { @Nullable private Object deletedItem; private final List innerList; @Nullable public final Object getDeletedItem() { return this.deletedItem; } public final void setDeletedItem(@Nullable Object var1) { this.deletedItem = var1; } public boolean remove(Object element) { this.deletedItem = element; return this.innerList.remove(element); } @Nullable public final Object recover() { return this.deletedItem; } public ListWithTrash() { this((List)null, 1, (DefaultConstructorMarker)null); } public int getSize() { return this.innerList.size(); } // $FF: bridge method public final int size() { return this.getSize(); } //...and so on}
@Nullable
private Object deletedItem;
private final List innerList;
public final Object getDeletedItem() {
return this.deletedItem;
public final void setDeletedItem(@Nullable Object var1) {
this.deletedItem = var1;
public boolean remove(Object element) {
this.deletedItem = element;
return this.innerList.remove(element);
public final Object recover() {
public ListWithTrash() {
this((List)null, 1, (DefaultConstructorMarker)null);
public int getSize() {
return this.innerList.size();
// $FF: bridge method
public final int size() {
return this.getSize();
//...and so on
注: 生成されたコードで、Kotlin コンパイラは Decorator パターンという別のデザイン パターンを使ってクラス委譲をサポートしています。Decorator パターンでは、デコレータ クラスがデコレートされるクラスと同じインターフェースを共有します。デコレータ クラスは、ターゲット クラスの内部参照を保持し、そのインターフェースで提供されるすべてのパブリック メソッドをラップ(デコレート)します。
委譲は、特定のクラスを継承できない場合に特に便利です。クラス委譲を使うと、クラスが他のクラスの階層に含まれることはなくなります。その代わり、同じインターフェースを共有し、元の型の内部オブジェクトをデコレートします。つまり、パブリック API を維持したまま、実装を簡単に入れ替えることができます。
by キーワードを使うと、クラス委譲だけでなく、プロパティを委譲することもできます。プロパティ委譲では、デリゲートはプロパティの get 関数と set 関数の呼び出しを担当します。他のオブジェクトで getter/setter ロジックを再利用しなければならない場合、対応するフィールドだけでなく機能を簡単に拡張することができるので、この機能が非常に便利です。
get
set
次のような定義の Person クラスがあったとしましょう。
Person
class Person(var name:String, var lastname:String)
このクラスの name プロパティには、いくつかのフォーマット要件があります。name を設定するとき、先頭の文字が大文字、他の文字が小文字になるようにします。さらに、 name を更新する場合、updateCount プロパティを自動的にインクリメントします。
name
updateCount
この機能は、次のように実装してもいいかもしれません 。
<!-- Copyright 2019 Google LLC.SPDX-License-Identifier: Apache-2.0 -->class Person(name: String, var lastname: String) { var name: String = name set(value) { field = value.toLowerCase().capitalize() updateCount++ } var updateCount = 0}
class Person(name: String, var lastname: String) {
var name: String = name
set(value) {
field = value.toLowerCase().capitalize()
updateCount++
var updateCount = 0
これは動作しますが、要件が変わって lastname が変更されたときも updateCount をインクリメントすることになるとどうでしょうか。ロジックをコピーして貼り付け、カスタムの setter を書いてもいいかもしれませんが、両方のプロパティにまったく同じ setter を書いていることに気づくでしょう。
lastname
<!-- Copyright 2019 Google LLC.SPDX-License-Identifier: Apache-2.0 -->class Person(name: String, lastname: String) { var name: String = name set(value) { field = value.toLowerCase().capitalize() updateCount++ } var lastname: String = lastname set(value) { field = value.toLowerCase().capitalize() updateCount++ } var updateCount = 0}
class Person(name: String, lastname: String) {
var lastname: String = lastname
どちらの setter メソッドもほぼ同じということは、どちらかは不要ということです。プロパティ委譲を使うと、getter と setter をプロパティに委譲してコードを再利用できます。
クラス委譲と同じように、by を使ってプロパティを委譲します。すると、プロパティ構文を使ったときに、Kotlin はデリゲートを使うコードを生成します。
<!-- Copyright 2019 Google LLC.SPDX-License-Identifier: Apache-2.0 -->class Person(name: String, lastname: String) { var name: String by FormatDelegate() var lastname: String by FormatDelegate() var updateCount = 0}
var name: String by FormatDelegate()
var lastname: String by FormatDelegate()
この変更を行うと、name プロパティと lastname プロパティが FormatDelegate クラスに委譲されます。FormatDelegate のコードを確認してみましょう。デリゲート クラスは、getter だけを委譲する場合は ReadProperty<Any?, String> を、getter と setter の両方を委譲する場合は ReadWriteProperty<Any?, String> を実装する必要があります。この例の FormatDelegate は、setter が呼び出された場合にフォーマット処理を行うので、ReadWriteProperty<Any?, String> を実装しなければなりません。
FormatDelegate
ReadProperty<Any?, String>
ReadWriteProperty<Any?, String>
<!-- Copyright 2019 Google LLC.SPDX-License-Identifier: Apache-2.0 -->class FormatDelegate : ReadWriteProperty<Any?, String> { private var formattedString: String = "" override fun getValue( thisRef: Any?, property: KProperty<*> ): String { return formattedString } override fun setValue( thisRef: Any?, property: KProperty<*>, value: String ) { formattedString = value.toLowerCase().capitalize() }}
class FormatDelegate : ReadWriteProperty<Any?, String> {
private var formattedString: String = ""
override fun getValue(
thisRef: Any?,
property: KProperty<*>
): String {
return formattedString
override fun setValue(
property: KProperty<*>,
value: String
formattedString = value.toLowerCase().capitalize()
getter 関数と setter 関数に 2 つの追加パラメータがあることに気づいた方もいらっしゃるでしょう。最初のパラメータ thisRef は、プロパティを含むオブジェクトを表します。これを使うと、オブジェクト自体にアクセスし、他のプロパティを確認したり、他のクラス関数を呼び出したりできます。2 つ目のパラメータは KProperty<*> です。これは、委譲されたプロパティについてのメタデータにアクセスするために使うことができます。
thisRef
KProperty<*>
先ほどの要件を思い出してみてください。thisRef を使って updateCount プロパティにアクセスし、インクリメントしてみましょう。
<!-- Copyright 2019 Google LLC.SPDX-License-Identifier: Apache-2.0 -->override fun setValue( thisRef: Any?, property: KProperty<*>, value: String) { if (thisRef is Person) { thisRef.updateCount++ } formattedString = value.toLowerCase().capitalize()}
if (thisRef is Person) {
thisRef.updateCount++
この仕組みを理解するため、逆コンパイルした Java コードを見てみます。Kotlin コンパイラは、name プロパティと lastname プロパティについての FormatDelegate オブジェクトへのプライベートな参照を保持するためのコードと、追加したロジックを含む getter/setter の両方を生成します。
さらに、委譲されるプロパティを保持する KProperty[] も作成しています。name プロパティに対して生成された getter と setter を見てみると、インスタンスはインデックス 0 に保存されています。一方、lastname プロパティはインデックス 1 に保存されています。
KProperty[]
public final class Person { // $FF: synthetic field static final KProperty[] $$delegatedProperties = new KProperty[]{(KProperty)Reflection.mutableProperty1(new MutablePropertyReference1Impl(Reflection.getOrCreateKotlinClass(Person.class), "name", "getName()Ljava/lang/String;")), (KProperty)Reflection.mutableProperty1(new MutablePropertyReference1Impl(Reflection.getOrCreateKotlinClass(Person.class), "lastname", "getlastname()Ljava/lang/String;"))}; @NotNull private final FormatDelegate name$delegate; @NotNull private final FormatDelegate lastname$delegate; private int updateCount; @NotNull public final String getName() { return this.name$delegate.getValue(this, $$delegatedProperties[0]); } public final void setName(@NotNull String var1) { Intrinsics.checkParameterIsNotNull(var1, "<set-?>"); this.name$delegate.setValue(this, $$delegatedProperties[0], var1); } //...}
// $FF: synthetic field
static final KProperty[] $$delegatedProperties = new KProperty[]{(KProperty)Reflection.mutableProperty1(new MutablePropertyReference1Impl(Reflection.getOrCreateKotlinClass(Person.class), "name", "getName()Ljava/lang/String;")), (KProperty)Reflection.mutableProperty1(new MutablePropertyReference1Impl(Reflection.getOrCreateKotlinClass(Person.class), "lastname", "getlastname()Ljava/lang/String;"))};
@NotNull
private final FormatDelegate name$delegate;
private final FormatDelegate lastname$delegate;
private int updateCount;
public final String getName() {
return this.name$delegate.getValue(this, $$delegatedProperties[0]);
public final void setName(@NotNull String var1) {
Intrinsics.checkParameterIsNotNull(var1, "<set-?>");
this.name$delegate.setValue(this, $$delegatedProperties[0], var1);
//...
この仕組みによって、通常のプロパティ構文を使って任意の呼び出し元が委譲されるプロパティにアクセスできるようになっています。
person.lastname = “Smith” //
println(“Update count is $person.count”)
Kotlin は単に委譲をサポートしているだけではありません。Kotlin 標準ライブラリで組み込みの委譲も提供していますが、詳しくは別の記事で説明したいと思います。
委譲は他のオブジェクトにタスクを委譲する際に役立ち、コードの再利用性を高めます。Kotlin コンパイラは、委譲をシームレスに使えるようにコードを作成します。Kotlin は、by キーワードを使ったシンプルな構文でプロパティやクラスの委譲を行います。Kotlin コンパイラは、パブリック API を一切変更せず、委譲をサポートするために必要なすべてのコードを内部的に生成します。簡単に言えば、Kotlin は委譲に必要なボイラープレート コードをすべて生成して維持してくれます。つまり、委譲を Kotlin に委譲することができるのです。
Reviewed by Yuichi Araki - Developer Relations Team
この記事は Scott Swarthout による Android Developers Blog の記事 "Android studio 4.1" を元に翻訳・加筆したものです。詳しくは元記事をご覧ください。
2020 年 10 月 12 日(日本時間 10 月 13 日)、Android Studio 4.1 の安定版がリリースされました。編集、デバッグ、最適化の一般的なユースケースに対応する一連の機能が追加されています。今回のリリースの主なテーマは、Android Jetpack ライブラリを使う際の生産性向上でした。Android Jetpack とは、デベロッパーがベスト プラクティスに従って速くコードを書けるようにするための Android ライブラリ スイートです。皆さんからのフィードバックに基づき、コード編集操作にたくさんの改善を行ったほか、よく使われる Android ライブラリを IDE に統合しています。
Android Studio 4.1 で注目すべき機能には、アプリのデータベースを照会できる新しい Database Inspector、依存性注入に Dagger または Hilt を使うプロジェクトのナビゲーションのサポート、オンデバイス機械学習のサポート向上(Android プロジェクトでの TensorFlow Lite モデルのサポートを含む)などがあります。さらに、変更の適用を更新してデプロイを高速化しました。皆さんからのフィードバックに基づき、ゲーム デベロッパーに役立つ変更も行いました。新しいネイティブ メモリ プロファイラとスタンドアロン プロファイリング ツールを導入しています。
私たちは、Android Studio の品質を向上するため、バグやパフォーマンスの問題に懸命に対応してきました。多くのデベロッパーの皆さんから、パフォーマンスと信頼性の向上に主眼を置いていることを評価する声が届いています。今回のリリース サイクルでは、2,370 個のバグを修正し、公開されていた 275 個の問題をクローズしたことをご報告します。デベロッパーの皆さんの生産性にとって鍵となるのは、高い品質です。私たちはこれからも高い品質を維持することをお約束します。
プレビュー リリースで早くからフィードバックを寄せてくださった皆さん、ありがとうございました。皆さんからのフィードバックは Android Studio 4.1 の開発にあたって反復作業や機能改善に役立ちました。最新の安定版リリースを使う準備が整い、新たな生産性機能を使ってみたい方は、Android Studio 4.1 をこちらからダウンロードしてください。
続いて、主なデベロッパー フローごとに分類された、Android Studio 4.1 のすべての新機能をご紹介します。
新しいプロジェクトを作成する際のダイアログに表示される Android Studio のテンプレートが、マテリアル デザイン コンポーネント(MDC)を使ったものになりました。デフォルトで、テーマとスタイルの最新ガイドに準拠しています。この変更により、推奨のマテリアル スタイル パターンや、ダークテーマなどの最新の UI 機能を簡単に使えるようになります。
アップデートには、以下の内容が含まれています。
新しい Database Inspector では、アプリのデータベースを簡単に調査、照会、変更できるようにしたいと考えました。この機能を使ってみるには、API レベル 26 以降を実行しているデバイスにアプリをデプロイし、メニューバーから [View] > [Tool Windows] > [Database Inspector] を選択します。アプリで Jetpack Room ライブラリを使っている場合でも、Android プラットフォーム バージョンの SQLite を直接使っている場合でも、実行中のアプリのデータベースやテーブルを簡単に調査したり、カスタムクエリを実行したりできます。
Android Studio は、アプリを調査しているときもライブ接続を維持しているので、Database Inspector を使って値を変更し、実行中のアプリで変更内容を確認することもできます。Room 永続化ライブラリを使っている場合は、コードエディタの各クエリの隣にも実行ボタンが表示されるので、@Query アノテーションで定義したクエリをすばやく実行できます。詳細はこちらをご覧ください。
Android Studio の中で直接 Android Emulator を実行できるようになりました。この機能を使うと、画面スペースを節約したり、ホットキーでエミュレータとエディタのウィンドウ間をすばやく移動したり、1 つのアプリケーション ウィンドウの中で IDE とエミュレータのワークフローを整理したりできます。なお、スナップショットの管理や、回転やスクリーンショットなどの一般的なエミュレータ操作は Studio から行うことができますが、すべてのオプションにアクセスするには、安定版のエミュレータを実行する必要があります。この機能は、次の操作でオプトインできます。
[File] → [Settings] → [Tools] → [Emulator] → [Launch in Tool Window]
Android デベロッパーは、機械学習を使って革新的で便利な体験を生み出しています。TensorFlow Lite は、モバイル機械学習モデルを記述する際によく使われるライブラリです。私たちは、こういったモデルを Android アプリに簡単にインポートできるようにしたいと考えました。Android Studio は、ビューのバインディングと同じような使いやすいクラスを生成してくれます。そのため、少量の型安全なコードでモデルを実行できます。ML モデル バインディングの現在の実装では、メタデータで拡張されたイメージ分類とスタイル変換のモデルがサポートされています。
インポートしたモデルの詳細やアプリでモデルを使う手順は、プロジェクトで .tflite モデルファイルをダブルクリックし、モデルビューアのページを開くと確認できます。詳細はこちらをご覧ください。
Android エミュレータは、最近追加された 5G 携帯通信のテストに加え、折りたたみ式デバイスもサポートします。Android Emulator 30.0.26 以降では、さまざまなデザインや設定の折りたたみ式デバイスを設定できます。折りたたみ式デバイスを設定すると、エミュレータはヒンジ角度センサーのアップデートと姿勢の変化を報告するようになります。そのため、このフォーム ファクタに対してアプリがどのように応答するかをテストできます。詳しくは、ブログ投稿 Developing for Android 11 with the Android Emulatorをご覧ください。
ビルドが速くなれば、デベロッパーは短時間で簡単にアプリを変更できるようになります。アプリに対する反復作業の生産性を上げるため、Android 11 以降を実行しているデバイス向けに、変更の適用機能を強化しました。
私たちは反復作業にかかる時間の短縮に本格的に取り組み、アプリをインストールすることなく変更をデバイスにデプロイして永続化する方法を開発しました。一度 Android 11 デバイスにデプロイすれば、それ以降、コードの変更の適用 [Apply Code Changes] または変更を適用してアクティビティを再起動 [Apply Changes and Restart Activity] する場合のデプロイが大幅に速くなります。さらに、変更の適用でコードの変更のサポートが強化されています。メソッドを追加した場合でも、コードの変更の適用 [Apply Code Changes] または変更を適用してアクティビティを再起動 [Apply Changes and Restart Activity] のどちらかをクリックすることで、実行中のアプリに変更をデプロイできるようになっています。
Android Gradle プラグイン 4.0 には、AAR の依存関係の Prefab パッケージをインポートする機能が追加されています。この機能については、ネイティブ ライブラリの共有もサポートするように拡張したいと考えていました。AGP バージョン 4.1 を利用すると、Android ライブラリ プロジェクト用の AAR に格納されている外部ネイティブ ビルドからライブラリをエクスポートできます。ネイティブ ライブラリをエクスポートするには、ライブラリ プロジェクトの build.gradle ファイルの android ブロックに以下を追加します。
buildFeatures { prefabPublishing true } prefab { mylibrary { headers "src/main/cpp/mylibrary/include" } myotherlibrary { headers "src/main/cpp/myotherlibrary/include" } }
ネイティブ コードでクラッシュや ANR が発生した場合、システムはスタック トレースを生成します。これは、クラッシュした瞬間までにプログラムがネストして呼び出した一連の関数のスナップショットです。このスナップショットは、ソースの問題を特定して修正する際に役立つ可能性がありますが、マシンのアドレスを人間が読むことができる関数名に戻すため、まずシンボリケーションを行う必要があります。
C++ などのネイティブ コードを使ってアプリやゲームを開発する場合、アプリのバージョンごとにデバッグ シンボル ファイルを Play Console にアップロードできるようになりました。Play Console は、このデバッグ シンボル ファイルを使ってアプリのスタック トレースのシンボリケーションを行い、クラッシュや ANR を解析しやすくします。App Bundle にデバッグ シンボルを含めるには、プロジェクトの build.gradle ファイルに次の行を追加します。
android.buildTypes.release.ndk.debugSymbolLevel = 'SYMBOL_TABLE'
Android Studio 4.1 では、システム トレースを大幅に見直しました。システム トレースは、アプリがシステム リソースをどのくらい使っているかをリアルタイムで確認できる最適化ツールです。今回は、ボックス選択モードでトレースを簡単に選択できるようにし、新しい解析タブを追加し、アプリの UI のレンダリングに関する問題を調査できるように詳しいフレーム レンダリング データを追加しました。詳細はこちら(英語)をご覧ください。
ボックス選択: [Threads] セクションで、マウスをドラッグすると、四角形の領域をボックス選択できるようになりました。右上の [Zoom to Selection] ボタンをクリックする(または M キーボード ショートカットを使う)と、ズームできます。また、隣り合っている似たようなスレッドをドラッグ&ドロップすると、複数のスレッドをまたいで選択し、同時に調査できます。
Summary タブ: [Analysis] パネルに新しく [Summary] タブを追加しました。このタブには、以下の内容が表示されます。
データの表示: [Display] セクションに SurfaceFlinger と VSYNC の新しいタイムラインが追加されました。アプリの UI のレンダリング問題を調査する際に役立ちます。
Android Studio のメイン ウィンドウとは別のウィンドウで Android Studio のプロファイラにアクセスできるようになりました。この機能は、Unity や Visual Studio など、別のツールで構築した Android ゲームを最適化する場合に便利です。
スタンドアロン プロファイラを実行するには、以下の操作を行います。
<studio-installation-folder>\bin
<studio-installation-folder>/Contents/bin
profiler.exe
profiler.sh
Memory Profiler ウィンドウの上部にある [Record native allocations] をクリックすると、記録を開始します。
本資料は、Unity Technologies やその関連会社による提供または提携ではありません。“Unity” は、米国およびその他の場所における Unity Technologies またはその関連会社の商標または登録商標です。
特定の製品情報を探しやすくするために、2020 年 11 月以降、Android と Google Play の情報は Android Developers Japan Blog をメインのブログとして情報掲載を開始します。Android と Google Play の情報をお探しの方は、こちらのブログを今後ご覧ください。
日本で開催される Android と Google Play 関連のイベントやキャンペーンなどの日本のデベロッパー様向けの情報を随時発信していきます。
製品情報、新規機能やポリシーの変更などだけではなく、Android と Google Play をより活用するための事例や分析方法、マーケティングの情報なども順次掲載していきます。
Android Developers Japan Blog をぜひご覧ください。
Posted by Tamao Imura - Developer Marketing Manager, Platforms and Ecosystems